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SUMMARY 

In  the  present  report a  compressible  Navier-Stokes  solution  procedure 
i s  applied t o  the  flow  about an i so l a t ed   a i r fo i l .  Two major  problem areas 
have been  investigated. The first area i s  that of  developing  a  coordinate 
system and an i n i t i a l   s t e p   i n   t h i s   d i r e c t i o n  has been taken. An a i r f o i l  
coordinate  system  obtained from specification  of  discrete  data  points has 
been  developed and the  heat  conduction  equation  has  been  solved i n  this 
system. Efforts  required  to  al low  the Navier-Stokes  equations t o  be  solved 
i n  this system are discussed. The second  problem area i s  that of  obtaining 
flow field  solutions.   Solutions  for  the  f low about a circular  cylinder and 
an i so la ted   a i r fo i l   a re   p resented .   In   the  former case  the  prediction i s  
shown t o  be i n  good agreement with  data. 





INTRODUCTION 

The predict ion  of   the  f low  f ie ld   about   isolated  a i r foi ls   a t   var ious 
angles of attack  has been a subject  of  great  interest   to  aerodynamicists 
over the  years.  The importance  of  such  flow f i e l d s  i s  evident   in   the  design 
of aerodynamic machinery. The associated aerodynamic  problems vary from a 
whole machine t o  a detailed  analysis  of some const i tuent   par t .  To  name a 
few important  problems, it i s  often  necessary  to  determine from the  flow 
field the performance  of  such components as  an  airplane wing,  a control  
surface, a propel ler  or a helicopter  rotor  blade.   In  this  context it should 
be   c lear   tha t  a r e l i ab le  method of  predicting aerodynamic flow fields is  of 
great  value. 

In   cases   in  which t h e   a i r f o i l  i s  a t  a  moderate angle of a t tack,   the  
viscous boundary layer  w i l l  remain attached  over most of t he   a i r fo i l   su r f ace ;  
in   these   s i tua t ions ,  lie and moment predictions  as  well   as  predictions  of  the 
detailed  pressure  distributions  along  the  blade  surfaces  can  be made with 
inviscid  flow  calculations  such  as  those  of  Giesing  (e.g., Ref. l), Giesing, 
Kalman and Rodden ( R e f .  2 )  or Bauer,  Garabedian  and Korn (Ref. 3). If skin 
friction  drag  for  steady  f lows i s  desired, a  boundary layer  procedure  such 
as  those  of  Refs. 4 or 5 can  be  readily performed providing  separation does 
not  occur. For unsteady  flows  the  incompressible  procedures of Nash and 
Patel  (Ref. 6) and Briley and WDonald (Ref. 7)  are   avai lable .  If separation 
does  occur  but  the  separation  region  remains  small,  predictions of t he   a i r -  
f o i l  viscous  layer  can s t i l l  be made, as  has  been  demonstrated  by Shamroth 
and Kreskovsky (Ref. 8 )  and  Kreskovsky,  Shamroth  and Briley  (Ref. 9)  who 
applied  the Briley-McDonald separation  bubble  calculation method t o   t h e  
problem  of  flow  about  an airfoil   section  with  varying  angle of a t tack.  

The above procedures  are  applicable  only  in  the  absence  of  significant 
regions  of  separated  flow.  In many cases of p rac t i ca l   i n t e re s t   t he  flow 
about  the  airfoil   contains  regions of significant  separation,and  in  these 
cases  procedures  based upon an  outer  inviscid  flow  calculation which ignores 
viscous  displacement  effects and an  inner  viscous  solution  in  the immediate 
v i c in i ty  of the   a i r fo i l   a re   inappl icable .  

An important example  of an a i r f o i l  flow f i e l d  which contains  significant 
regions  of  separated  flow i s  the  helicopter  rotor  blade.  It i s  t h i s  problem 
which has motivated  the  present  study. Under high  speed f l ight   condi t ions 
the   re t rea t ing   ro tor   b lades   a re   subjec ted   to  a diminished dynamic pressure 
and as  a r e su l t  high  blade  performance  requires  large l i f t  coe f f i c i en t s   t o  
be present  over  the  retreating  portion  of  the  rotor  disc. These large lift 
coefficients  are  generated by  placing  the  blade  at   large  incidence  angles 
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r e l a t i v e   t o   t h e  oncoming veloci ty  field. A t  these  large  incidences  the 
boundary layers   developing  a long  the  a i r foi l   surface will separate  over  at  
l e a s t  a portion  of  the  chord. When separation becomes significant,   the  blade 
experiences a de ter iora t ion   in   per formnce  and th i s   de t e r io ra t i cn  is  termed 
s t a l l .  

A i r f o i l   s t a l l  can  be  divided  into two main c a t e g o r i e s ,   s t a t i c   s t a l l  
and dynamic s t a l l .   S t a t i c   s t a l l  occurs when an a i r f o i l  i s  placed a t  a la rge  
incidence  angle i n  a steady  stream.  This  type  of s t a l l  has  been  discussed i n  
de ta i l   by  McCullough  and Gault  (Ref. 10). Dynamic s t a l l  occurs when the 
incidence i s  a fbnction  of  time. For  example, as  the  helicopter  rotor  blade 
travels  through  the  rotor  disc,  it may experience a varying  incidence  angle. 
Over most of the  rotor   disc   the  blade will be  unstalled, however, s t a l l  may 
occur  over a portion of the  disc  and over t h i s   po r t ion   t he   a i r fo i l  performance 
wi l l   su f f e r .  Dynamic s t a l l   d i f f e r s  from s t a t i c   s t a l l   i n  two obvious ways. 
Firs t   of   a l l ,   experimental   evidence  c lear ly  shows that   both  the maximum l i f t  
obtainable and the  incidence a t  which performance first deter iorates   are  
grea te r  under dynamic conditions  than  under  static  conditions  (e.g.,  Ref. 11). 
Secondly,  although  under s ta t ic   condi t ions lift i s  uniquely  re la ted  to  
incidence,  the dynamic s t a l l  process  has a hysteresis  loop  associated  with 
it so  tha t   t he  l i f t  depends upon the  incidence  history. T h i s  h i s t o r i c a l  
phenomena  makes the dynamic s t a l l  process much  more d i f f i c u l t   t o   p r e d i c t  
t han   s t a t i c   s t a l l   p rocess .  

Despite i t s  complex nature dynamic s t a l l  has  been the  subject of severa.1 
recent  experimental  investigations. For example, the  behavior of the  leading 
edge separation  bubble has  been investigated  by  Velkoff,  Blaser and Jones  (Ref. 
12) and Isogai  (Ref. 13) end the mechanism of dynamic s t a l l  on a NACA 0012 a i r -  
f o i l  has  been investigsted by McCroskey  and Philippe  (Ref. 14), McCroskey, 
Carr, and McAlister  (Ref. 15) and Parker  (Ref. 16).  The var ia t ion of lift and 
moment coeff ic ients   through  the  s ta l l  regime  has  been presented  in  several 
works such 8.s those of Liiva  (Ref. 11) and Landgrebe and Bellinger  (Ref. 17). 

Although dynamic s t a l l  may occur i n  a var ie ty  of  flow  situations it 
plays a particularly  important  role  in  helicopter  rotor  performance,partic- 
u la r ly   s ince  a rotor  blade may encounter a continuously  varying  free  stream 
veloci ty  and  a continuously  varying  incidence  angle  as it proceeds  around 
the  rotor .  Obviously the  blade  performance i n  terms  of lift and moment 
coeff ic ients  will depend upon how the   b lade   reac ts   to  i t s  changing  environ- 
ment. In   addi t ion ,   b lade   fa t igue   s t ress ,   b lade   f lu t te r  and a i rc raf t   v ibra-  
t i on  w i l l  be  dependent upon the  periodic  blade  loading and unloading. Thus 
the aerodynamic performance, the   ro tor   s t ruc tura l   in tegr i ty  and a i r c r a f t  
v ib ra t ion   cha rac t e r i s t i c s   a r e   a l l   s ign i f i can t ly   a f f ec t ed  by  possible dynamic 
s t a l l  phenomena. 
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To date a variety  of approaches have been  used t o  analyze and predict  
dynamic s t a l l .  Since  the  various approaches  have  been  motivated by different  
immediate objectives,  the obvious differences  in  philosophy which have 
appeared are  not  surprising. A recent  review  of many of these methods has 
been  given  by McCroskey i n  Ref. 18. Ham and Garelick ( R e f .  19) and Ham 
(Ref. 20) have attempted t o  model  dynamic s t a l l  by  an inviscid  process  in 
which vort ices   are  shed from the   a i r fo i l   l ead ing  edge. Although the  theory 
has  predicted m a x i m u m  l i f t  and moment coefficients  during dynamic s t a l l ,  it 
has not  predicted  the dynamic s t a l l  loop.  Furthermore, i n  this approach the 
time or incidence a t  which s t a l l  begins  either must be assumed a r b i t r a r i l y  
o r  must be  based upon a data  correlation. Baudu, Sagner and Souquet  (Ref. 21) 
a lso have developed  an  approach  based upon a vortex  shedding model. 

Other investigators have approached the problem  by building semi- 
empirical models of the   s ta l l   p rocess .  These models have been  motivated by 
t h e  need for  practical   prediction  techniques and have proven quite  useful 
in   predict ing dynamic s t a l l   cha rac t e r i s t i c s .  For example, Ericsson and 
Reding have developed  a  procedure which predicts dynamic s t a l l   cha rac t e r i s t i c s  
by combining s t a t i c   a i r fo i l   da t a   w i th  semi-empirical models (Refs. 22 and 23). 
Another example of this   type of work i s  tha t  of Lang (Ref. 24) who developed 
a prediction  procedure which combines a bubble burs t ing   c r i te r ia   wi th  an 
inviscid flow analysis.  Although these methods serve a pressing  practical  
neeqtheir   empirical   nature  dictates  that   they  be used  with  caution. S t i l l  
another  approach predicts dynamic s ta l l   charac te r i s t ics  from data  correlations. 
For example, Carta, Commerford  and Carlson have r e l a t ed   s t a l l   cha rac t e r i s t i c s  
t o   t h e  time-incidence  history of t h e   a i r f o i l  ( R e f .  2 5 ) .  However, s ince   th i s  
method i s  based upon da ta   cor re la t ion   for   spec i f ic   a i r fo i l s   in   spec i f ic   types  
of motion, it i s  not  clear how this method could  be  extended  either  to 
a l t e rna te   a i r fo i l  shapes or to  other  types  of motion. 

Although the  previously mentioned procedures fill an  important immediate 
need, they  are  limited  by semi-empiricism or dependence upon data  correla- 
t ions.  A basic  understanding  of  the s ta l l  process or t h e   a b i l i t y   t o  make 
predictions  well  outside  the  correlating  data  base  requires more fundamental 
approaches and several  such  approaches have been  developed. For example, 
the  analysis of Scruggs,. Nash and Singleton (Ref. 26) t r e a t s   f i l l y   t u r b u l e n t  
boundary layer  flow  developing under  a prescribed  pressure  gradient  obtained 
from the full inviscid  equations. The analysis  has  as i t s  main objective 
an  assessment  of  the  effect of unsteady phenomena  upon the   t r a i l i ng  edge 
separation  point. A more comprehensive analysis  has  been  developed  by 
C r i m i  and Reeves (Ref. 27) who conibined linearized  potential  flow  equations 
with boundary layer  equations  to  predict  the  flow  field  behavior. While i 

t h i s  procedure  has had some success i n  predicting l i f t  and moment hysteresis 
loops through s t a l l ,   t h e  model has  several  shortcomings.  First,  althoughthe 
Crimi-Reeves approach uses a finite-difference boundary layer   calculat ion  in  
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regions  of  attached  flow, it resorts  to  an  integral   procedure  in  the  reversed 
flow  region. In  addition,  the  procedure  uses a l inearized  inviscid  analysis 
and empirical   transit ion and bubble burs t ing   c r i te r ia .   In  a recent work 
Shamroth and Kreskovsky (Ref. 8) have developed  a weak interact ion dynamic 
s ta l l  analysis which i s  not  limited by in tegra l  boundary layer assumptions, 
semi-empirical  bubble  bursting  assumptions and semi-empirical t r ans i t i on  
assumptions. I n   t h i s  work Shamroth and Kreskovsky applied  the  Briley- 
McDonald separated  flow  finite-difference code ( R e f .  7) i n  conjunction  with 
the  Giesing  potential  flow code (Ref. 1) t o  analyze  the dynamic s ta l l  
problem.  Although the  procedure's weak interaction  l imitation  prevented 
the code from calculating  hysteresis  loops  through  stall,   the  analysis  did 
predict what appears t o  be the   cor rec t   s ta l l  mechanism f o r  a NACA 0012 a i r f o i l  
o s c i l l a t i n g   a t  a Reynolds number of approximately 0.5 x 107. A t  the time of 
the Shamroth-Kreskovsky study it was commonly assumed such an a i r f o i l  would 
s t a l l   a s  a resu l t  of leading edge bubble  bursting, however, Ref. 8 predicted 
the bubble t o  remain attached and s ta l l  to   o r ig ina te  through  abrupt  separa- 
t ion  of the  turbulent boundary layer.  T h i s  s t a l l  mechanism has been 
confirmed  by the experiments of McCroskey, Carr and McAlister  (Ref. 15)  
and Parker  (Ref.  16),and  as  pointed  out i n  Ref. 15  such  behavior i s  consis- 
tent   with  the  s ta t ic   data  of Gregory and O'Reilly  (Ref. 28) and Ridder 
(Ref. 2 9 ) .  

Despite  the  fact  that  both  the Crimi-Reeves analysis and the Shamroth- 
Kreskovsky analysis approach the problem from a  fundamental basis,  both  analy- 
ses  are s t i l l  limited  by  their  treatment of the  interact ion between the  inner 
viscous  layer and the  nominally  inviscid  flow. The Shamroth-Kreskovsky 
analysis does not  allow any interact ion and thus  cannot  be  applied i n  regions 
of significant  viscous  separation. Although the Crimi-Reeves analysis 
includes  an  interaction model, t h i s  model i s  based upon a  semi-empirically 
determined  pressure i n  regions of separated  flow.  In  addition, it should 
be recalled  that   the Crimi-Reeves inviscid  analysis i s  .based upon linearized 
theory. These considerations  indicate  the need fo r  new analyses  not  limited 
by interaction models and an  obvious candidate   analysis   fulf i l l ing  this  
requirement would be the full Navier-Stokes  equations. 

With the  continued improvements i n  computers and the  continued  rapid 
advancement i n  numerical  techniques,  Navier-Stokes  procedures have become an 
increasingly  attractive  alternative  for  calculating  the  f low about  an 
a i r f o i l .  Much ear ly  work in  this  area  concentrated upon predicting  flow 
about  a circular  cylinder and a  comprehensive bibliography on this   subject  
can  be found in  the  recent  paper by Coutanceau  and Bouard (Ref. 3 0 ) .  
It should  be  noted that  those works mentioned i n  Ref. 30 include  solutions 
of both  the  steady  state and time-dependent equations, however, a l l   t h e  
procedures were limited  to  incompressible  flow. More recently, Navier-Stokes 
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procedures have been  applied t o  more complex shapes  including  airfoils 
(Refs. 31-32, 34).   In R e f .  31 Mehta and Iavan have investigated  the  flow 
f i e l d  about  an  impulsively  started  airfoil   with a f inite difference  proce- 
dure using  stream.  function and vo r t i c i ty   a s  dependent variables.  These 
r e su l t s  gave an  excellent  picture of the  s tar t ing  process .  However, the 
Mehta-Lavan procedure is  limited t o  incompressible  flow and has  been  applied 
only i n  conjunction  with a conformal mapping procedure.  In  addition,  the 
large number of relaxation  i terations  required  per  t ime  step may give 
relatively  long  running  times.  According t o  Ref.  32, the  run times  for 
this mthod  averaged 9.5 minutes  of U N N A C  1108 time per  time  step.  Despite 
this relat ively  long run time,  the  excellent  results of Ref.,31  represent 
a strong argument f o r  Navier-Stokes solutions.  

In  another  analysis, Wu and Sampath (Ref.  32) have applied  the Wu- 
Thompson integro-differential   formulation  (Ref.  33) t o   t h e   a i r f o i l  problem. 
This calculat ion  a lso has shed l i g h t  on the   impuls ive ly   s ta r ted   a i r fo i l  
problem, however, it i s  not  easily  extendable  to  compressible  flow and t o  
date it has been  formulated  and  used  only f o r  an a i r f o i l  which can  be mapped 
conformally  into a circle.  In  addition,  the  procedure  requires  continuously 
more run  time  as  the  rotational  portion of the  f low  f ie ld  grows. This 
makes the   p rocedure   l ess   a t t rac t ive   for   p red ic t ing   s teady   s ta te   so lu t ions  
than  for   predict ing  t ransients .  A different  approach  has  been 
taken by Verhoff  (Ref. 34) who has applied MacCormack's fu l ly   exp l i c i t  
method (Ref. 35) t o   t h e   a i r f o i l  problem.  Unlike the  procedures  of  Refs. 
31 and 32, t h i s  formulation i s  compressible, however, being  ful ly   expl ic i t  
the  procedure  requires many time  steps  to convergence leading   to   re la t ive ly  
long run times. It i s  l i k e l y   t h a t   t h i s  run time problem could  be 
a l l e v i a t e d   i f  MacCormack's  more recent  technique were used  (Ref. 36). 

F ina l ly ,   in  a recent  paper  Steger  (Ref. 37) has  used a viscous  analysis 
in  conjunction  with  the  coordinate  generation  procedure of Thompson,  Thames 
and  Mastin  (Ref. 38) to   predict   f low  about   an  a i r foi l .  The viscous  analysis 
i s  t h a t  of Beam and Warming (Ref. 39) which follows  Briley and McDonald 
(Ref. 40) i n  combining a Taylor  expansion  linearization  with a Douglas-Gunn 

AD1 procedure. The major d i f fe rence   in   the  two approaches l ies i n   t h e  choice 
of dependent var iables .  The same l inear iza t ion  was used  with  an  alternate 
AD1 approach  by Lindemuth and Killeen  (Ref. 41). The basic  coordinate 
generation  procedure  (Ref. 38) depends upon the  solut ion of an e l l i p t i c  
set of par t ia l   d i f ferent ia l   equat ions.   Addi t ional   modif icat ions  are  
made i n  one coordinate  direction s o  t h a t  mesh points  are  concentrated 
near  the body surface and i n   t h e  wake region  near a specified  branch 
cut .  The branch  cut, however, cannot  be  technically  treated  as a 
branch  cllt i n  the  usual  sense. The problem here  occurs  because  only 
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function boundary conditions have been  applied  along  the  cut;  the result i s  
a cut  with  tangent  discontinuities  in  the  crossing  coordinate  curves.  The 
simultaneous  application of both  f’unction  and  derivative  conditions would 
cer ta in ly  remove t h i s  problem. However, it would also  require   the  solut ion 
of  a higher   order   e l l ipt ic  system: a process which would be  costly and 
ine f f i c i en t .  By contrast ,   the  methods developed in   t h i s   s tudy   can   e f f i -  
c i en t ly  and correct ly  model the  branch  cut  with  both  function and der ivat ive 
specif icat ions.  

The work under the  present  effort   represents  the f i rs t  s t e p   i n  
obtaining a genera l   e f f ic ien t  computer  code capable  of  predicting  flow 
about a i r f o i l s  of general geometry. The work is  an  extension  of  the  original 
work of Briley and McDonald (Ref. 41) for  the  numerical  method and of Eiseman 
(Ref. 42) for   the  geometry.  Although a t   p resent   on ly  two-dimensional,  laminar 
flows are  considered,  the  procedure i s  extendable  both t o   t h r e e  dimensions 
and t o  turbulent  flows. 
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LIST OF SYMBOLS 

Except where dimensions are  specified,  a l l  quant i t ies  i n  the  following 
a re  nondimensional;  physical  velocities  are  normalized  by UT, density by 
p r y  pressure by pru$,  dynamic v iscos i ty  by FLr, and time  by (L/%) where L 
i s  the  reference  length. 

a Speed  of  sound; m/sec 

A Constant  defined i n  Eq. (13); 
Coordinate  system  parameter, Eq. (15); 
Matrix  coefficient, Eq. (25b) 

b 

B 

C 

ds 

wi 
D 

D D2 m’ m 

=ln 

Major t o  minor a x i s   r a t i o  of e l l i p s e  

Constant  defined i n  Eq. (13); 
Coordinate  distribution  parameter 

Speed  of l i g h t ;  m/sec 

Dif fe ren t ia l  element  of arc  length 

Differential  increment of coordinate y i 

Diameter  of c i rcular   cyl inder  

Finite  difference  operators  for  coordinate y 
m 

Momentum equation  coefficient, Eq. (13) 

Multidimensional  spatial   derivative  operator  vector 

Spatial   derivative  operator  vector  associated  with  coordinate y 
m 

Coordinate  tangent  vector field, a?/a? 

Momentum equation  coefficient,  Eq. (12) 

General  f’unction, Eq. (20) 

&mentum equation  coefficient,  Eq. (13) 
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LIST OF SYMBOLS (CONT'D) 

G 

G a i  j 

hi 

H 

I,, 

J 

K 

R 

L 

m 

M 

M r 

fi 

Metric  tensor  coefficient 

Inverse  metr ic   tensor   coeff ic ient  

General  function, Eq. (20) 

Momentum equat ion  coeff ic ient ,  Eq. (13) 

Metric  coefficient,  orthogonal  coordinates 

General  vector  function, Eq. (19 )  

Momentum equation  coefficient,  Eq. (13) 

Jacobian 

Momentum equation  coefficient,  Eq. (13) 

Number of  nonlinear  equations  solved; 
A i r f o i l  chord  length 

Reference  length,  meters 

Momentum equat ion  coeff ic ient ,  Eq. (13) 

Linear  operator, Eq. ( 2 5 ~ )  

Coordinate  distribution  parameter, Eq. (16) 

Major axis of   e l l ipse  
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ANALYSIS 

The Governing Equations i n  General  Tensor Form 

The ro le  of generalized  coordinates. - In  the  numerical  solution of 
f luid dynamic problems there   are  many advantages t o  be  gained  by  judicious 
choice  of  coordinates  (eg. , Ref. 43).  The most obvious  advantage i s  t h a t  
the  physical  boundaries  of a flow  region  can be represented  by  coordinate 
surfaces.  This removes the need f o r   f r a c t i o n a l   c e l l s  i n  general; hence, 
the  complications and loss of  accuracy  associated  with a  boundary in t e r -  
polat ion  are  removed. Another  advantage i s  t h a t  a uniform  numerical method 
can  be  used. The solution  can  then  be  performed  with a fixed number of 
c e l l s   i n  any  given  direction and with a uniform mesh spacing. The r e s u l t  
i s  a simplification  of  the computer logic;  hence,  a savings i n  time for both 
the computer  and the programmer results. 

In  addition,  the  coordinate  transformation  can  be  constructed  to 
contain  distributions  for  physical   space mesh points .   In   this   context ,   the  
uniform mesh of  computational  space i s  simply mapped i n t o  a sui tably 
d is t r ibu ted  mesh in  physical   space.  The resolution of large  solution 
gradients i s  the  major  objective in   t he   s e l ec t ion  of  a coordinate mesh 
d is t r ibu t ion .  A c l a s s i ca l  example i s  the  resolution  of  attached boundary 
layers .  Another more subt le  example i s  the  resolution  of  large  gradients 
i n  computational  coordinates due to  regions  of  high  curvature on the 
bounding surfaces. When the  transformation  contains  the mesh point distri- 
bution  there i s  no need to  construct  the  apparatus  for  the  discrete  approxi- 
mation  of derivatives on a  nonuniform mesh. T h i s  r e s u l t s   i n  a savings i n  
both computer logic and storage. A s  an i l lustrat ion,   consider   the  case 
where it i s  desired  to  automate the  difference molecule s o  that  the  numerical 
technique  can  be changed with a f e w  parameters. Changes, in   p rac t ice ,  
usually amount t o  a select ion between  forward, backward, or cent ra l  
differences.  For any given  direction,  three  parameters  each  for f i rs t  and 
second der ivat ives   are  needed fo r  second  order  accurate methods. Thus, 
counting 6 parameters  for boundary conditions, a t o t a l  of 12 parameters 
are  needed f o r  each AD1 direct ion.  T h i s  compares favorably  with  the  direct 
approximation  of  derivatives on a  nonuniform mesh where the  requirement i s  
f o r  6 N  parameters on an A D 1  direct ion of length N. 

A further  advantage  of  the  generalized  coordinate  approach i s  t h a t   f o r  
a given  problem  coordinates  can  be  selected from  a large  c lass  of coordinate 
systems. In  the  process of sorting  through  the  various  possible  coordinate 
systems two c r i t e r i a   a r i s e .   F i r s t ,   t h e  new coordina.tes must l e a d   t o  a r e a l  
simplification;  secondly,  the  coordinates must be  easily  generated. 
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Since bounding surfaces  usuallybecome  coordinate  surfaces  the first c r i t e r -  
ion i s  almost  always  met. The remaining  complexity i n  the  first c r i t e r ion  
i s  d i r ec t ly  measured  by  consideration  of  the  metric  tensor  (gij) which i s  
obtained from the  expression  for  the  fundamental  element of arc   length 

(dd2 = gij  dy dy i j  

Specifically,   an  increase  in  the number of  nontrivial  elements  in  the 
expression of the  metric  tensor i s  accompanied by a corresponding  increase 
i n   t h e  number of  terms in   the  equat ions  of  motion. The r e s u l t  i s  an 
increase  in  the  computationalwork  that  i s  needed after  the  coordinates 
have been  generated  along  with  the  necessary  metric  data. The second 
cr i ter ion,   unl ike  the f i rs t ,  i s  most often  neglected. The unfortunate 
r e su l t  i s  tha t   there  i s  often more  work involved i n  making the  coordinates 
than in   so lv ing   the   o r ig ina l  problem with a less ef f ic ien t   sa t i s fac t ion  of 
t h e  f i rs t  c r i te r ion .   In   fac t ,   bo th  of t h e   c r i t e r i a  above u s u a l l y   a r e   a t  
opposite  polarities  in  complexity. The prudent  selection of coordinates i s  
then a balance between these   c r i t e r i a .  

The c r i t e r i a   f o r   s e l e c t i n g  a su i tab le  system of coordinates  can  be  used 
t o  compare the  various  classes of coordinate  systems and to   evaluate   the 
r e l a t i v e   u t i l i t y  of each. The evaluation will star t   wi th   conformaltrans-  
formations and continually  enlarge  the  class until the most general  time- 
dependent  coordinates  are  reached. 

For conformal  transformations  the  metric  tensor i s  simply  given  by a 
scalar  multiple  of  the  identity.  That is, g i j  = h(9)bi-j where the Kronecker 
symbol b i j  vanishes  unless i = j i n  which case it i s  uni ty .  From t h i s  
expression it i s  easy t o  show t h a t  h = ($)l/n where J i s  the  Jacobian of 
the  n-dimensional  conformal  transformation. The simplicity  of  the  metric 
leads  to  very  simple  equations of  motion a t   t h e   e q e n s e  of  greatly 
r e s t r i c t ing   t he   c l a s s  of easily  obtained  transformations. These t rans-  
formations  are  generally  obtained  by  the  solution of p a r t i a l   d i f f e r e n t i a l  
equations which may i n   i t s e l f  be  costly.   In  addition,  the  control  over 
the  mesh d is t r ibu t ions  i s  ind i rec t  a t  bes t .   In  two dimensions, however, 
conformal  transformations have been successfully  used on  many occasions. 
Here the  metric i s  given  by g i j  = I J I 6 i j ,  and the  theory of functions  of 
one complex var iable  i s  a powerful t o o l  which can  be  used. When the 
boundaries  of  the  flow  region  can  be matched with well-known conformal 
transformations  there i s  nothing  that   can  effectively compete with this 
way of  generating  coordinates. 

I n  a number of cases  boundaries  can be matched through a sequence of 
well-lmown transformations. However, i n  most cases of p rac t i ca l  importance 



the  boundaries  are  too  complicated; and consequently,  cannot  be  simply 
defined as desired. Thus, one i s  l e d   t o  approximate methods. For t he  
gene ra l   a i r fo i l  shapes  there i s  the  method of  Theodorsen (Ref. 44) and  along 
similar l ines   t he re  i s  the  more recent work of  Ives  (Refs. 45, 46) which 
employs the  Fast   Fourier Transform. Both techniques map a i r f o i l s   t o   n e a r  
c i r c l e s  through a sequence  of well-known  maps; and then  use a Fourier  type 
of  approximation. The Schwartz-Christoffel  transformation mqy be used t o  
approximate arbitrary  shapes  with  piecewise  linear  curves.  This  technique 
works bes t   fo r  simply  connected  regions where no branch  cuts  are needed. A 
bas i c   l imi t a t ion   i n   t h i s  method i s  t h e  poor representation  of w a l l  curvature. 
This can  be par t ia l ly   reso lved  by using  the  Schwartz-Christoffel  transfor- 
mation  with  rounded  corners as in  Henrici  (Ref. 47). But then  there i s  
l i t t l e   c o n t r o l  over  the  rounding  process. Conformal mappings in   h igher  dimen- 
s ions   a l so   ex is t   (c f . ,  R e f .  48) bu t   a re   genera l ly   d i f f icu l t   to   cons t ruc t .  

When conformal mappings become ove r ly   d i f f i cu l t   t o   cons t ruc t ,  it i s  
best   to   consider   the  s l ight ly   larger   c lass   of   or thogonal   t ransformations.  
For orthogonal  transformations  the  metric  tensor i s  given  by  the  diagonal 
form g i j  = [Q (7)] *h i j .  Note that,  unlike  the  conformal  transformations, 
the  diagonal   entr ies  of the  metric  can  be  different.  The deviation from 
conformality  can now e a s i l y  be  measured by  an  examination  of  the  ratios  of 
the  funct ions  hi  as now i s  demonstrated  by  an  explicit  geometric  interpre- 
ta t ion  of   the  metr ic .  For a pos i t i on   vec to r   f i e ld  2, t he   vec to r   f i e ld  zi = 
(a?)/(ayi) i s  the  natural   tangent  vector  f ield  along  coordinate  curves 
generated  by  holding  the  remaining  coordinates yl ,  . . . , 9-1, yi+l Y . . . ,  yn 
constant. It i s  of ten common pract ice   to   use  the  operator   notat ion where 
the   pos i t ion   vec tor   f ie ld  i s  omitted. By an  application  of  the  chain rule, 
the f'undamental element  of arc   length can  be  expanded as 
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and  hence,  by l i nea r  independence  gij4=  ei-ej. Now note  that   the  metric is 
orthogonal i f  and only i f  the si and ej   are   perpendicular  when i # j . But 
perpendicularity  of 32 and sj at  a point i s  equivalent to   the  perpendicular  
crossing  of   the  associated  coordinate   curves   a t   the   point   in   quest ion.  
Consequently the  notion  of  orthogonality  in  terms  of  coordinate  curves i s  
equivalent  to  the  metric  expression above. In  addition  the  functions 
a re   ea s i ly   s een   t o  be  equal to   the  lengths  of the  corresponding  natural 
tangent  vectors si. When the  lengths  are  equal it i s  clear   that   the   t rans-  
formation i s  conformal. However, a s   t he   r a t io s  of the % deviate from unity, 
the  transformation  smoothly  deviates from conformality. 

4 4  

With fewer constraints  on the  metric,  the  selection  of  coordinates 
from the   c lass  of orthogonal  transformations i s  s l i g h t l y   l e s s   r e s t r i c t i v e  
than a select ion from the   c lass  of  conformal  transformations. The process 
of  coordinate  generation i s  usually accomplished  by  geometric methods. The 
desire  i s  to   c rea te   fami l ies  of mutually  orthogonal  coordinate  surfaces. A s  
a s ta r t ing   po in t ,  one usually  begins  the  process  with a given  family  of 
surfaces   that   are   generated  in  some  way from the boundary  of the  flow 
region.  Families of orthogonal  surfaces  are  then  to be  constructed t o  
complete the  specif icat ion of coordinates. The f i rs t  family  of  surfaces 
defines a unique  normal vec tor   f ie ld .  T h i s  vec tor   f ie ld  i s  then  extended 
t o  a smooth f i e l d  of orthogonal  frames which must be  integrated  to  generate 
the  orthogonal  coordinate  surfaces. The condi t ion  for   integrabi l i ty  i s  
contained i n   t h e  Frobenius Theorem (Ref. 44). The computational  process 
general ly   leads  to   the  solut ion of a system of different ia l   equat ions.  T h i s ,  
however, i s  often a diff icul t   exercise   just   to   obtain  or thogonal   coordinates .  

General  nonorthogonal  coordinates  are  often  preferable  to  orthogonal 
coordinates  since  the mesh distributions  can  be  controlled and since  the 
coordinates  are  considerably  easier  to  generate.  The construction  process 
i s  usually  geometric and generally does not   re ly  on the  solution of 
different ia l   equat ions.   Certain methods, however, are  not  entirely  based 
upon the geometry, but upon the  solution  of a system  of e l l i p t i c   p a r t i a l  
differential  equations  (e.g.,Ref. 38). Such methods are  generally  of 
comparable efficiency  with  those  of  the  conformal  type. The en t i r e ly  
geometric methods usually  can  be  used  with  distribution  functions  replacing 
independent  variables so t h a t  mesh point  distributions  are  used  directly.  
Such i s  generally  not  the  case  for  other methods. The considerable improve- 
ment in   f lex ib i l i ty   assoc ia ted   wi th   the   c lass  of general   spatial   coordinates 
does come with a small price.   Specifically,   the  metric  tensor has 
generally  nontrivial  off  diagonal  elements. A s  with  the  difference between 
orthogonal and conformal  coordinates,  the  deviation of the  general  non- 
orthogonal  coordinates from orthogonality  can  be measured d i r ec t ly  from the 
metric. That is, the  cosine  of  the  angle between distinct  coordinate  curves 
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i s  given  by  the  dot  product of the  associated unit tangent  vectors. The 
cosine of the  angle between curves i and j can  be  written  as: 

Thus  when g i j  vanishes   for   dis t inct  i and j the  coordinates  are  orthogonal, 
and when gij  increases from 0 t h e  coordinates  smoothly  deviate from 
orthogonality  with  the  deviation  given by the  arc  cosine of Eq.  (3). Local 
regions  of  nearly  orthogonal  coordinates  can  then  be  constructed  within 
a nonorthogonal  system.  This  can  be  used t o  some advantage i n  regions where 
large  solution  gradients  are  expected. For example,  boundary layer  
regions may be  treated  with  nearly  orthogonal  coordinates which  smoothly 
deviate from orthogonality  as  largely  inviscid  regions  are  approached. An 
i l l u s t r a t i o n  of this   type of construction i s  given i n  Ref. 42. 

When time-dependent  problems are  considered  the  general  nonorthogonal 
spatial   coordinates can  be  used  provided that  the  boundaries of the  flow 
region  are   r igidly  f ixed  re la t ive  to   the  region.  However, i f  the  region 
changes  shape as  a function of time,  then  the  purely  spatial  coordinate 
analysis above i s  no longer  valid  unless  special   precautions  are  taken. 
In  terms of the  metric  the  pseudoriemannian  metric  from  special  relativity 
i s  used. Here, the  Cartesian frame xl, 2, x3 i s  extended t o  a Lorentz 
frame  by the  addition  of a time-like  coordinate xo (Refs. 50-54). The 
fundamental  expression for arc  length  in  space-time i s  

where the summation i s  now from 0 t o  3. 

In this   context ,   the   c lass ical   equat ions of  motion are  obtained from 
the  vanishing  divergence  of  the  stress-energy  tensor and  a subsequent 
approximation for  slowly moving f lu ids .  This i s  discussed a t  more length 
in  the  following  section.  Possible  applications  for  such  coordinate systems 
include  ducts  with moving walls such as  blood  flow problems as  well as 
f l u t t e r  problems where a i r f o i l s  may be o s c i l l a t i n g   r e l a t i v e   t o  each  other. 
A s  special   cases   the  c lass ical   Euler ian and Lagrangian  coordinates  as  well 
as everything  in between are  obtained. 

The equations  of motion f o r  a viscous  f luid.  - The equations of  motion 
of a viscous  fluid  are  given by a divergence  free  stress-energy  tensor 

18 

. .  . . . 



Tik :-pvivk + ( p +  r ~ p  2 d i v T ) 8 ,  k - p  9 mk (Vi,m+ v ~ , ~ )  

(Refs. 50-54) where $ i s  a space-time  velocity, vi are  covariant components, 
$ are contravariant components, p i s  viscosi ty ,  p i s  pressure, p i s  density, 
commas denote  covariant  derivatives, g"k i s  the  inverse  metric, and 6; i s  the 
Kronecker de l ta .  In  tensor  analysis,   the term contravariant   refers   to   the 
components. of  a vec to r   i n   t he   bas i s  si; covariant ,   to   the components of the 
vec to r   i n   t he  basis gj defined  by  the  duality  condition Zi = 6 4 .  Here the 
Latin  indices  generally  vary from 0 t o  3 and repeated  indices  are  to  be summed 
(Einstein summation convection). The metric i s  generated from  a l o c a l   b r e n t z  
frame and generally depends upon the  veloci ty  of l ight  c.   Since  the  veloc- 
i t i e s   i n   c l a s s i c a l  mechanics a r e  much less  than  the  velocity of l i gh t ,   t he  
Navier-Stokes  equations  can  be  retrieved  as an approximation to   the  equat ions 

1 

Tik k = O  

when terms of order c - ~  r e l a t i v e   t o   u n i t y   a r e  removed. The advantage 
inherent  in  the  approximation of the above spec ia l   re la t iv i s t ic   equa t ion  
i s  tha t   the  Navier-Stokes  equations are  expressed  in a manner independent 
of  any  space-time  coordinate  system and are  given a metric  structure  induced 
from the   r e l a t iv i s t i c   s t ruc tu re .  The metric  structure  contains  the  classical  
Coriolis and cen t r i fuga l   fo rce   e f f ec t s   i n  a clean and concise manner.  That 
i s ,  i n   a d d i t i o n   t o   s p a t i a l  changes, the  metr ic   contains   a l l  of the  time- 
dependent variations  of  the  coordinate  transformations. The de ta i l s  of 
the  approximation were presented  in McVittie  (Ref. 5 0 )  for  inviscid  f lows 
and i n  Walkden (Ref. 52) for  viscous  flows. A l l  quant i t ies   in   the  fol lowing 
equations  are  nondimensional;  physical  velocities  are  normalized  by  ur, 
density  by P r y  pressure  by prur , dynamic viscosi ty   by pr, and time  by 
(L/ur) where L i s  the  reference  length.  The resulting  equations for viscous 
flow  (Ref.  52) a re  

2 

for i = 0 and 

" 



. . .  

for i = 1, 2, 3 where J i s  the  Jacobian. The equation  for i = 0 can  be 
iden t i f i ed  as the  continuity  equation;  the  equations for 1 i 3, as the  
respective momentum equations. Here, i = 0 represents  the  t ime-like  direction 
and Greek indices a, 6, E, w represent  space-like  directions as they  vary  only 
from 1 t o  3. The energy  equation, a l s o  presented  in  Ref. 52, can  often  be 
replaced  with 

under  an  assumption of  constant   total   temperature ,  where A = T 0 / y q 2  and 
B = -(y-1)/2y. An expansion of the  momentum equation  leads t o  a system o f  t he  
form 

which i s  suitable  for  automatic  computation. For a time-independent  metric, 
this result  reduces  to  the  Navier-Stokes  equations i n  a f ixed frame 
(Ref. 55). By use of t h e  intermediate quant i t ies  
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The Coordinate  System 

An effective  coordinate system f o r   t h e  two-dimensional  isolated  airfoil  
problem  can  be  generated  from two loops (or arcs)   of   data .  The two loops f i rs t  
are  given a parameterization t i n  a manner which causes  both a d i s t r ibu t ion  
of  loopwise  points and an  alignment  of  points  between  the two loops.  Here, 
the  inner   loop i s  the   a i r fo i l ;   the   ou ter   loop ,   the   ou ter   computa t iona l  
boundary. The coor$inate  system i s  then  genera2ed  by a l inear   in te rpola t ion  
between loops. If a ( t )  denotes  an  outer  loop; B ( t )  , an  inner  loop; and R ( r )  , 
a distribution  function  with  independent  variable 0 < r < 1; then  the 
coordimate  transformation i s  given  by 

" 

where the  Cartesian  location 2 i s  -$ when R = 0 and 2 when R = 1. The 
metr ic   data   for  this coordinate  system i s  presented   in  Ref. 42 where the  loops 
are  constructed  for  a casca.de of a i r foi ls   ra . ther   than  for   an  isolated  a i r foi l .  
Although the  coordinate  transformation, Eq.  (14), i s  $representative of a 
la rge   c lass  of  transformations, it i s  in s t ruc t ive   t o   spec ia l i ze  our 
d i scuss ion   a t   l ea s t   i n i t i a l ly   fo r   pu rposes  of i l l u s t r a t i o n .  Thus, i n  most 
of  the  discussion, it will'*be assumed t h a t   t h e   a i r f o i l  has no cusps  and is  
convex;  minor  modifications  can  be employed for  cusps and regions of 
concavity. With convexity,  an  orthogonal  coordinate  system  can  be  generated, 
if each  interpolation  between  inner 2nd outer  loop  points i s  over a l i n e  
normal t o   t h e   a i r f o i l  surface: This  can  be  accomplished  by  generating  the 
outer  computational  boundary cy as a uniform d i l a t ion   a long   a i r fo i l  normal 
lines:  That i s ,  i f  G ( t )  i s  the  outward unit normal v e c t o r   f i e l d   t o   t h e  air- 
f o i l  B ( t  ) , then  the  outer  computational  boundary i s  given  by 

f o r  some fixed  distance A .  The parameter t, as a loopwise  distribution, 
can  easily  by  specified  as  the  arc  length  of some intermediate  loop $(t) -k 
Bn(t)  where 0 S B 5 A .  The parameter t can be viewed a s  a l abe l   fo r  
corresponding  inner and outer  loop  points.  This i s  analogous to   i nne r  and 
outer  points  being  displayed as sequences  each  with  an  index t .  In   t ak ing  
the  analogy one step  further,  the  pseudoradial  curves  correspond t o   t h e  
l ines   joining  inner  and outer  loop  points  with  the same index. As B i s  
adjusted from 0 t o  A t he   d i s t r ibu t ion   va r i e s  from a i r fo i l   a rc   l ength   towards '  
outer  loop  arc  length.  Under a uniform  discret izat ion  of  t ,  t h i s  will 
cause   po in ts   to   c lus te r  around the  a i r foi l   regions  of   higher   curvature  

A 
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. " 

(notably a t  leading  and/or  trail ing  edges) as A i s  approached. To complete 
the  specificaiton  of  the  coordinate  transformation, Eq. (14), a defini t ion  of  
R ( r )  i s  needed. The function R ( r )  i s  used to   spec i fy  a dis t r ibut ion  of  
points  along  the  coordinate  curves normal t o   t h e   a i r f o i l .  Commonly, it i s  
desired  to   resolve a boundary layer   near   the   a i r fo i l   sur face .  For t h i s  
purpose,   the  distribution 

R (r) = mr + (I-m) t a n h  D(l-  r) 
t a n h  D 1 

i s  most e f fec t ive  ( R e f .  42) .  Here, a slope m i s  selected  to  determine a 
suitable  uniform  boundary  layer mesh corresponding t o   t h e   l i n e  R = mr; the  
l eve l  of  adherence t o   t h i s   l i n e  i s  a r e s u l t  of  the  selected damping fac tor  D. 
A s  D i s  increased from 0 ,  the   d i s t r ibu t ion  w i l l  depart from global  uniformity 
and more closely  fol low  the  given  l ine  before   increasing  to   the end point 
R(1) = 1. By construction,  the  only  inflection  point  occurs a t  R(1) = 1. 
Due to   the   in f lec t ion   po in t   condi t ion ,   the   d i s t r ibu t ion   leaves  an  almost 
uniformly  distributed  boundary  layer  region  with a continuously  expanding 
gr id  as. r approaches 1. 

Once the  coordinate  transformation i s  established,  the  numerical 
so lu t ion   for  a desired  flow  field  can  be  attempted. The  mesh i n   t h e  
computational domain i s  given  by  uniform  discretizations  of  both r and t .  
The array of mesh points  here i s  a rectangular  formation which i s  consider- 
ably  simpler  than  the  corresponding  array i n  physical  space. The advantages 
of th i s   formula t ion   a re   c lear .  

In  certain  cases  the  coordinate  system  can  be  constructed  directly from 
an   ana ly t i ca l ly   spec i f i ed   a i r fo i l  surface. For example, cons ider   an   a i r fo i l  
i n   t h e  shape  of  an  ellipse. The ana ly t ic   spec i f ica t ion  i s  given  by 

for 0 s 8 5 21-r and where ul and I+ are  the  standard  Cartesian unit vectors .  
The major  axis i s  denoted  by M; the  ra. t io  of  major  to minor  axes,  by  b. If 
t h e  outward  expansion  along  the unit normals i s  suf f ic ien t ly   l a rge  (as i s  
often  the  case ) , then  the  outer   loop i s  near ly   c i rcu lar .  As such,  the 
d i s t r ibu t ion  t determined  by  the  outer  loop  arc  length i s ,  f o r  a l l  p rac t i ca l  
purposes,   proportional  to  the  angles formed by  the  outward  unit  normals 
and the  x - axis. With a l i t t l e   a l g e b r a ,  it can  be shown t h a t  

A A 
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which  upon  substitution  leads to the  desired  parametric form  of the airfoil 
-5 
B'(t). 

Generally,  the  coordinate  construction  must  be  done  numerically.  The 
process  is  broken  down  into a sequence of  operations;  namely,  the  determina- 
tion of airfoil  normals,  the  selection of B, the  construction of inner  and 
-outer  loops,  and  finally  the  generation  of  coordinates  from R and  the  two 
loops.  In  more  detail  these  operations  are  tabulated  as fo l lows:  

-> 

Generate  the  airfoil  surface B(s ) where s is an arc  length 
parameterization. 

Construct  the  unit  vector  field  n(s). A 

Choose B such  that o 5 B 5 A 

Construct  the  intermediate  loop y (s ) = B (  s ) + B n(s) 

Store  the  paired  points ( B ( s  ) , TB(s ) ) 

Reparameterize yB by  its  arc  length  t  to  obtain y (t) 

From the  pairing  in  (e),  reparameterize  the  airfoil  surface  to 
obtain z( t ) 
Generate  the  outer  boundary  from Eq.  (15) 

-+ A 

B 
-f 

+ + 
B 

Choose  the  number;N, of loopwise  mesh  points 

If t  varies  from o to  some  value T, then  set  At = T/(N-l) 

For each  t = nAt,  evaluate  inner  and  outer  loops  as  n = 0, ..., N-1 

Choose  the  Parameters  m  and D which  control  the  desired  resolution 
for  the  boundary  layer  region 

Choose  the  number, M, of mesh  points  in  the  pseudora,dial  direction 

For each I- = d ( M - 1 1 ,  evaluate  the  radial  distribution ( E q .  ( 1 6 ) )  
for  m = 0 ,  1,. . . , M - l  

Generate  an NxM coordinate  grid  from Eq. (141, step  (k)  and  step  (n) 



If t h e   a i r f o i l   d a t a  i s  not smooth, then a least  squares  curve f i t  w i l l  be 
needed t o  determine  the  normals  (Ref. 56). Further  curve f i t s  w i l l  be  needed 
to   construct   inner  and outer  loops.  If, however, B i s  not  too  large,   then 
inner and outer  loops  can be constructed  direct ly  from a f i t  t o   t h e   i n t e r -  
mediate  curve  corresponding t o  B. Since  the  intermediate  curve  has an a rc  
length  parameterization it i s  usual ly   easier   to   obtain an accurate f i t .  In 
any  case, it i s  only  necessary t o  f i t  one curve;  the  others  can  be  obtained 
as expansions or contractions  along  the normal l i nes .  

The method of  coordinate  construction  presented  here  can  also  be 
adapted to   t he   spec i f i c   h igh  Reynolds number problem considered  by  Steger 
( R e f .  37). I n   t h a t  problem the  mesh was generated to   reso lve  a flow f i e ld  
about   an  isolated  a i r foi l   wi th  a long  but narrow wake region. For th i s   case ,  
the  leading edge region on t h e   a i r f o i l  i s  considered t o  be bounded by  the 
points  above  and  below t h e   a i r f o i l  where the  outward unit normal vector f irst  
becomes v e r t i c a l .  The uni t   vec tor  f i e ld  n ( t )  i s  now chosen to   co inc ide   wi th  
t h e  outward unit normal vector   in   the  leading  region,  t o  po in t   ve r t i ca l ly  
outward i n   t h e  remaining a i r f o i l   r e g i o n s ,  and in   cont inua t ion   to   po in t  
v e r t i c a l l y  away from a horizontal   branch  cut  in  the wake region. The rdsu l t  
i s  two arcs  of data rather   than two loops of data. A s  before ,   the   dis t r ibu-  
t i o n  t i s  determined  by the arc  length  of  an  intermediate  arc.  The general  
construction and analysis  of two loop (or arc)  coordinate systems i s  given 
i n  Ref. 4?. There the  analysis  includes  coordinate  stretches which a re  
app l i cab le   t o   t he  wake region where an  expanding mesh may be  desired. An 
i l l u s t r a t i o n  of th i s   coord ina te  system i s  given in   F ig .  1. 

A 

The MINT Procedure 

One of the  major  obstacles  to  the  routine  numerical  solution  of  the 
multi-dimensional  compressible  Navier-Stokes  equations i s  the   l a rge  amount 
of computer time generally  required, and consequently,   efficient computa- 
t i o n a l  methods are   highly desirable. Most methods fo r   so lv ing   t he  compres- 
sible Navier-Stokes  equations have been based on explicit difference 
schemes for   the  unsteady form of  the  governing  equations and are   subjec t  t o  
one or more stabil i ty r e s t r i c t i o n s  on the   s ize   o f   the  t i m e  s t e p   r e l a t i v e   t o  
t h e   s p a t i a l  mesh s i z e .  These s t a b i l i t y  limits usual ly   correspond  to   the 
w e l l  known Courant.-Friedrichs-Lwy (CFL) condition  and,  in some schemes, 
t o  an  addi t ional   s tabi l i ty   condi t ion  ar is ing from viscous terns. I n  one 
dimension, t he  CFL condition i s  A t  5 Ax/( Iu I + a) ,  and the   v i scous   s t ab i l i t y  
condition i s  A t  S ( A x ) ~ / ~ v ,  where A t  i s  the  time step,  Ax i s  the  mesh s ize ,  
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u i s  the   ve loc i ty ,  a i s  the  speed  of sound, and v i s  kinematic  viscosity.  
These s tabi l i ty  restrictions  can  lower  computational  efficiency  by  imposing 
a smaller time s tep  than would otherwise  be  desirable. Thus, a key dis- 
advantage  of  conditionally stable methods i s  t h a t   t h e  maximum time s t ep  i s  
f ixed   by   the   spa t ia l  mesh s ize   ra ther   than   the   phys ica l  time dependence or 
t h e  desired temporal  accuracy.  In  contrast   to most e x p l i c i t  methods, 
impl ic i t  methods tend   to   be  stable fo r   l a rge  time s teps  and  hence o f f e r  
the  prospect  of  substantial   increases  in  computational  efficiency,  provided 
of  course  that   large time s teps  are acceptable   for   the  physical  problem  of 
i n t e r e s t  and that   the   computat ional   effor t   per  time s t ep  i s  competitive 
with  that  of e x p l i c i t  methods. I n  an e f f o r t   t o   e x p l o i t   t h e s e   p o t e n t i a l l y  
favorable   s tab i l i ty   p roper t ies ,   an   e f f ic ien t   impl ic i t  method based on 
alternating-direction  differencing  techniques was developed  by  Briley and 
McDonald (Ref. 40). 

This method was subsequently  designated  the  Multidimensional  Implicit 
Nonlinear Time-dependent (MINT) solution  procedure. The MINT method was 
fu r the r  developed  and appl ied  to   both  laminar  and turbulent  duct  flows  by 
Briley,  McDonald and Gibeling  (Ref. 57). Subsequently, a three-dimensional 
compressible  Navier-Stokes  combustor  flow  analysis  employing  the MINT 
procedure was developed  by  Gibeling, McDonald and Briley (Ref. 58) and this 
procedure was then employed by Levy, e t  a l . ,  (Ref.  59) t o  determine  the 
f eas ib i l i t y   fo r   cmpu t ing  a turbulent  shock-wave boundary  layer  interaction 
with  an  implicit method. 

Outline of  method. - The MINT procedure  has  been  previously  described 
i n  Refs. 40 and 57, however, the  descr ipt ion will be  repeated  here  for 
completeness. The method can  be  briefly  outl ined  as  follows:  the  governing 
equations  are  replaced  by  an  implicit time difference  approximation,  option- 
a l l y  a backward difference o r  Crank-Nicolson scheme. Terms involving 
nonl inear i t ies  a t  the   impl ic i t  time level   are   1inear izFd by Taylor  expansion 
about   the   so lu t ion   a t   the  known time leve l ,  and spat ia l   d i f ference  approxi-  
mations are introduced. The r e s u l t  i s  a system of  multidimensional  coupled 
(but   l inear)   d i f ference  equat ions  for   the  dependent   var iables   a t   the  
unknown o r  impl ic i t  time leve l .  To solve  these  difference  equations,  the 
Douglas-Gunn (Ref. 60) procedure  for  generating  alternating-direction 
impl ic i t  ( A D I )  schemes as perturbations  of  fundamental  implicit  difference 
schemes i s  introduced. This technique  leads  to  systems  of  coupled  linear 
difference  equations  having  narrow  block-banded  matrix  structures which 
can  be  solved  efficiently  by  standard  block-elimination methods. 

The method centers  around  the  use  of a formal  l inearization  technique 
adapted f o r  the  integration  of  init ial-value  problems. The l i nea r i za t ion  
technique, which requires  an  implicit  solution  procedure,  permits  the 
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solution  of  coupled  nonlinear  equations i n  one space  dimension ( to   the  . 
requisite  degree  of  accuracy)  by a one-step  noniterative scheme. Since 
no i t e r a t i o n  i s  required t o  compute the  solut ion  for  a single  time  step, 
and  since  only moderate e f f o r t  i s  required  for  solution  of  the  implicit 
difference  equations,  the method i s  computationally  efficient; this 
eff ic iency i s  retained  for  multidimensional problems  by  using AD1 techniques. 
The method i s  a l s o  economical i n  terms of  computer s torage ,   in  i t s  present 
form requiring  only two time-levels of storage  for  each  dependent  variable. 
Furthermore, the AD1 technique  reduces  multidimensional problems t o  sequences 
of calculations which a re  one-dimensional in   the  sense  that   easi ly-solved 
narrow  block-banded  matrices  associated  with  one-dimensional rows of gr id  
points   are  produced.  Consequently,  only  these  one-dimensional  problems 
require  rapid-access  storage a t  any  given  stage of the  solution  procedure, 
and the remaining  flow variables  can  be  saved on auxiliary  storage  devices 
i f  desired. 

Although present   a t tent ion i s  focused on the  compressible  Navier-Stokes 
equations,  the  numerical method employed i s   qu i t e   gene ra l  and i s  formally 
derived  for systems  of  governing  equations which have the  following form: 

where @ i s  a column vector  containing R dependent variables,  H and S a re  
column vector  functions  of @, and 2) i s  a column vector whose elements  are 
spa t ia l   d i f fe ren t ia l   opera tors  which may be  multidimensional. The generali ty 
of Eq. (19) allows  the method t o  be  developed  concisely and permits  various 
extensions and modifications  (e.g.,  noncartesian  coordinate  systems, 
turbulence models) to   be made more or less   rout inely.  It should be empha- 
sized, however, that  the  Jacobian aH/a@ must usually  be  nonsingular i f   t h e  
A D 1  techniques  as  applied  to Eq. (19) a re   t o   be   va l id .  A necessary  condition 
i s  that  each dependent variable  appear  in one or more of the  governing 
equations  as a time  derivative. An exception would occur i f  for   instance,  
a variable  having no time  derivative  also  appeared  in  only one equation, 
so that  this  equation  could  be decoupled from the remaining  equations and 
solved a pos te r ior i  by  an  alternate method. A s  a  consequence, the  present 
method is not  directly  applicable  to  the  incompressible  Navier-Stokes 
equations  except i n  one dimension, where AD1 techniques  are  wnecessaw. 
For example, the  velocity-pressure form of the  incompressible  equations  has 
no time  derivative  of  pressure, whereas the  vorticity-stream-function form 
has no time  derivative  of stream function. For computing steady  solutions, 
however, the  addition  of  suitable  "art if icial"  t ime  derivatives  to  the 
incompressible  equations,  as was done i n  Chorin's  (Ref. 61) a r t i f i c i a l  
compressibility method, would permit  the  application of the  present method. 
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Alternatively,  a  low Mach  number solution of the  present  velocity-density 
formulation  of  the  compressible  equations  can  be computed. 

Xnearization  technique. - A number of  techniques have been  used fo r  
implici t   solut ion of the  following  first-order  nonlinear  scalar  equation  in 
one dependent var iable   @(x, t )  : 

Special  cases of Eq. (20) include  the  conservation form i f  F(@) = 1, and 
quasi-l inear form i f  G($) = $. Previous  implicit methods f o r  Eq. (20) 
which employ nonlinear  difference  equations and a l so  methods based on  two- 
step  predictor-corrector schemes are  discussed  by Ames (Ref. 62, p. 82) 
and von Rosenburg (Ref. 63, p. 56). One such method i s  to   d i f f e rence  
nonlinear  terms  directly  at   the  implicit   t ime  level  to  obtain  nonlinear 
implici t   d i f ference  equat ions;   these  are   then  solved  i terat ively by a 
procedure  such  as Newton's  method.  Although otherwise  attractive,   there 
may be  diff icul ty   with convergence in   t he   i t e r a t ive   so lu t ion  of  the non- 
l inear  difference  equations,  and some eff ic iency i s  sacr i f iced  by the need 
f o r   i t e r a t i o n .  An implicit  predictor-corrector  technique  has  been  devised 
by Douglas  and Jones  (Ref. 64) which i s  applicable  to  the  quasil inear  case 
( G  = cb) of Eq. (20). The f irst  s tep  of their  procedure i s  to   l i nea r i ze   t he  
equation by eyaluating  the  non-linear  coefficient  as  F(gn) and to predict  
values  of Qn+p using  either  the backward difference or  the  Crank-Nicolson 
scheme.  Values f o r  Gn'l are  then computed i n  a s imilar  manner using F(dn*T) 
and the Crank-Nicolson scheme. Gourlay  and  Morris  (Ref. 65) have a l so  
proposed implicit  predictor-corrector  techniques which can  be  applied  to 
Eq. (20). In  the  conservative  case  (F=l),  their  technique i s  to   def ine  G ( @ )  
by  the  re la t ion G ( @ )  = @e($) when such a def in i t ion   ex is t s ,  and to   evaluate  

6 thereby known a t   t he   imp l i c i t  time  level,  the  equation  can  be  treated  as 
l i n e a r  and corrected  values of g n + l  a re  computed by the Crank-Nicolson scheme. 

A 

using  values  for Q n + l  computed by  an  expl ic i t   predictor  scheme. With 

A technique i s  described  here  for  deriving  l inear  implicit   difference 
approximations for   nonl inear   different ia l   equat ions.  The technique i s  based 
on an  expansion  of  nonlinear  implicit  terms  about  the  solution a t   t h e  known 
time  level, tn, and l eads   t o  a one-step  two-level scheme which, being  l inear 
i n  unknown (implicit)  quantities,  can  be  solved  efficiently  without  iteration. 
This  idea was applied  by Richtmyer and Morton (Ref. 66, p .  203) t o  a sca la r  
nonlinear  diffusion  equation. Here, t h e  technique i s  developed f o r  problems 
governed  by R nonlinear  equations  in R dependent var iables  which are  func- 
tions  of  time and space  coordinates. Although the   p resent   e f for t  concen- 
t r a t e s  upon  two s p a t i a l  dimensions and time,  the  technique will be described 
for  the  three-dimensional,  unsteady  equations. 
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The solution domain i s  discretized  by  grid  points  having  equal  spacings 
in  the  computational  coordinates,  Ayl, A$ and Ay3 i n   t h e  3, 9 and  y3 
directions,   respectively,  and an arbi t rary  t ime  s tep,  A t .  The subscri  t s  
i, j ,  k  and superscript  n are  grid  point  indices  associated  with  yl ,  y $ 3  , y 
and t, respectively, and thus @F,j,k denotes  @(yi, 1 2 3  yj, yk, t n )  . It i s  assumed 
tha t   the   so lu t ion  i s  known a,t the  n leve l ,   tn ,  and 1s desired  a t   the   (n+l)  
level ,  tn+l. A t  t h e   r i s k  of  an  occasional  ambiguity, one or more of the  
subscripts i s  frequently  omitted, so tha t  @n is  equivalent  to ~ f ,  j,k. 

The linearized  difference  approximation i s  derived from the  following 
implicit  time-difference  replacement of Eq. (19): 

where , fo r  example, Hn+l  5 H(Gn"'). The form  of a and the   spa t ia l   d i f fe renc-  
ing  are  as  yet   unspecified.  A parameter (0 < e S 1) has  been  introduced so 
as   to   permit  a variable  centering  of  the scheme i n  time.  Equation  (21) 
produces a  backward difference  formulation  for B = 1 and a  Crank-Nicolson 
formulation  for B = 3. 

The l inear iza t ion  i s  performed  by a two-step  process  of  expansion  about 
the known time l eve l  tn and subsequent  approximation  of  the  quantity 
(a@/at)nAt, which a r i s e s  from chain  rule   different ia t ion,  by (Gn+'-Gn). 
The r e s u l t  i s  

The matrices aH/a@ and aS/a@ are  standard  Jacobians whose elements  are 
defined,  for example, by (aH/a@)qr I aHq/3Qr. The operator  elements of 
t h e   m t r i x  a.2$3@ are  similarly  ordered, i .e. , ( aB/a@), aaq/aGr; however, 
the  intended meaning of  the  operator  elements  requires some c l a r i f i ca t ion .  
For the  9th row, the  operation ( a>q/8@)n ($n+l - On) i s  understood t o  mean 
t h a t   ( a / a t ~ g [ @ ( x , y , z , t ) ] ~  A t  i s  computed and t h a t   a l l  occurrences  of 
(8@,/i3t)n a r l s ing  from chain  rule  differentiation  are  replaced  by 
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After l inear iza t ion  as i n  Eqs. (22), Eq. (21) becomes the  following 
l inear   implici t   t ime-differenced scheme: 

( d ~ / d + ) ~ ( + ~ + ' - + ~ )  / A t  =B(+")  +Sn + p ( 8 3  /d+ + d ~ / d # ) " ( + ~ + ~ - + " )  (23) 

Although Hn'l i s  l i n e a r i z e d   t o  second  order i n  Eq. (22a),   the  division by 
A t  i n  Eq. (21) introduces  an  error term of  order A t .  A technique  for 
maintaining  formal  second-order  accuracy in  the  presence  of  nonlinear time 
derivat ives  i s  discussed  by McDonald  and Bri ley (Ref. 40), however, a three- 
l e v e l  scheme re su l t s .  Second-order  temporal  accuracy  can  also  be  obtained 
( fo r  p = $) by a change i n  dependent  variable t o  @ H(@), provided  this 
i s  convenient,   since  the  nonlinear  t ime  derivative i s  then  eliminated. 
The temporal  accuracy i s  independent  of  the  spatial  accuracy. 

A 

On examination, it can  be  seen  that Eq. (23) i s  l i n e a r   i n   t h e   q u a n t i t y  
- an) and t h a t   a l l   o t h e r   q u a n t i t i e s   a r e   e i t h e r  known or evaluated a t  

- @) ra ther   than Gn''. This  both  simplifies Eq. (23)  and  reduces 
the n level.  Computationally, it i s  convenient t o   so lve  Eq. (23)  for 

roundoff  errors,  since it i s  presumably b e t t e r   t o  compute a small O ( A t )  
change i n  a O(1) quantity  than  the  quantity i t s e l f .  To s implify  the 
notation, a new dependent  variable rL defined  by 

is introduced, and thus $'n'l = Qn'l - Gn,  and ,Ln = 0. It i s  also  convenient 
t o   r e w r i t e  Eq. (23) in   the   fo l lowing   s impl i f ied  form: 

where the  following symbols  have been  introduced t o   s i m p l i e   t h e   n o t a t i o n :  
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Spat ia l   d i f fe renc ing   of  Eq. (25a) i s  accomplished  simply  by  replacing 
derivative  operators  such as i f l a p ,  a 2 / 8 p a P  by  corresponding f i n i t e  
difference  operators, Dm, g. Henceforth, it i s  assumed t h a t  3 and 1 
have  been  discret ized  in   this  manner, unless  otherwise  noted. 

Before  proceeding, some general  observations seem appropriate. The 
foregoing  l inearization  technique assumes only  Taylor  expandability,  an 
assumption  already  implicit i n  the  use  of a f ini te  difference method. 
The governing  equations and  boundary  conditions are addressed  directly as 
a system  of  coupled  nonlinear  equations which collectively  determine  the 
solut ion.  The approach  thus seems more na tura l   than   tha t   o f  making ad hoc 
l i nea r i za t ion  and decoupling  approximations, as i s  of ten done in   applying 
impl ic i t  schemes t o  coupled  and/or  nonlinear  partial   differential   equations.  
With the  present  approach, it i s  not  necessary  to  associate  each  governing 
equation and  boundary condition  with  a  particular dependent var iable  and 
then   to   ident i fy   var ious   "nonl inear   coef f ic ien ts"  and  "coupling  terns" 
which  must then  be  treated  by  lagging,  predictor-corrector  techniques, 
or  i t e r a t i o n .  The Taylor  expansion  procedure i s  analogous t o   t h a t  used i n  
the  generalized Newton-Raphson or quasi- l inear izat ion methods f o r   i t e r a t i v e  
solution  of  nonlinear systems by  expansion  about a known current  guess of 
the  solut ion  (e .g .  , Bellman & Kalaba, R e f .  67). However, the  concept  of 
expanding  about  the  previous  time  level  apparently had not  been employed t o  
produce a noniterative  implicit  time-dependent scheme for  coupled  equations, 
wherein  nonlinear  terms are approximated to a l e v e l  of  accuracy commensurate 
with  that   of  the time differencing. The l inearization  technique  also  permits 
the  implicit  treatment  of  coupled  nonlinear  boundary  conditions,  such as 
stagnation  pressure and enthalpy a t  subsonic inlet   boundaries,  and i n  prac- 
t i c e ,   t h i s  l a t te r  fea ture  was found t o  b e   c r u c i a l   t o   t h e   s t a b i l i t y  of the  
ove ra l l  method (Refs. 40 and 57) . 

" 

Application  of  al ternating-direction  techniques.  - Solution  of Eq. (25a) 
i s  accomplished  by  application  of  an  alternating-directicm  implicit (ADI) 
technique  for  parabolic-hyperbolic  equations. The o r ig ina l  A D 1  method was 
introduced  by Peaceman and  Rachford ( R e f .  68) and  Douglas (Ref. 69); 
however, the  alternating-direction  concept  has  since  been expanded  and 
generalized. A discussion of various  alternating-direction  techniques i s  
given  by  Mitchell ( R e f .  70)  and Yanenko (Ref. 71). 

. -~ . "_ 

The present  technique i s  simply  an  application  of  the very general  
procedure  developed  by  Douglas  and Gunn (Ref .  60) for   generat ing AD1 schemes 
as perturbations  of  fundamental implicit difference schemes such as the  
backward-difference or Crank-Nicolson  schemes. 
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For the  present ,  it will be assumed that B(@) contains  derivatives of 
f i rs t  and  second  order  with  respect t o  2, y2 and y3, but  no mixed deriva- 
tives. I n   t h i s   c a s e ,  3 can be sp l i t   i n to   t h ree   ope ra to r s ,  Bl, B2, B3 
associated  with  the 9, y2 and y3 coordinates and each  having  the  f'unctional 
form Bm = q(@, a / a p ,  a2/ay%p).  Equation  (25a)  then becomes 

[ A + A t ( B ,  +1, +13 At [ (> ,  +B,+a3)v+Sn] (26) 

Recal l ing  that  l(lLn) = 0, t he  Douglas-Gunn representation  of Eq. (26)  can 
be  writ ten as the  following  three-step  solution  procedure: 

(A+At  1, ) $ * = A t  [( 3, +a, + 8,)#" +S (27a 1 

where $* and $ are  intermediate  solutions.  It will be shown subsequently 
that  each  of  Eqs.  (27)  can  be  written  in  narrow  block-banded matrix form 
and  solved  by  efficient  block-elimination  methods. If $* and $* a re  
eliminated, Eqs.  (27) become 

+E 

(A+At 1,. ) A " ( A + A t  1, )A"(A+At 1, ) $ " ' = A t  [(a, +a, - +a3) + n + ~ n ]  (28) 

If the  mult ipl icat ion on the  left-hand side of Eq. (28) i s  performed, it 
becomes apparent  that  Eq. (28)  approximates Eq. (26) to  order  (At)2.  
Although t h e   s t a b i l i t y   o f  Eqs.  (27)  has  not  been  established  in  circum- 
s tances   suff ic ient ly   general   to  encompass the  Navier-Stokes  equations, it 
is often  suggested (e .g. ,  Richtmyer & Morton, Ref. 66, p.  215) t h a t   t h e  
scheme i s  s t ab le  and accurate  under  conditions more general   than  those 
f o r  which rigorous  proofs  are  available.  This l a t te r  notion was adopted 
here as a working hypothesis  supported by favorable   resul ts   obtained  in  
ac tua l  computations  (e.g.,  Refs. 40, 57-59). 

A major a t t r ac t ion   o f   t he  Douglas-Gunn scheme i s  that   the   intermediate  
solut ions d'* and $* are consistent  approximations t o  ~n'l. Furthermore, 
for   s teady  solut ions,  cLn = $ = d' = cLn'l independent  of A t .  Thus, 
physical  boundary  conditions  for r , ! ~ ~ ~ ~  can  be  used in   the   in te rmedia te  
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steps  without a serious loss i n  accuracy and with no loss  for   s teady 
solut ions.   In   this   respect ,   the  Douglas-Gunn  scheme appears t o  have an 
advantage  over l oca l ly  one-dimensional (LOD) or "sp l i t t ing"  schemes,  and 
other schemes  whose intermediate  steps do not  satisfy  the  consistency 
condition. The lack  of  consistency  in  the  intermediate  steps  complicates 
the  treatment of boundary conditions  and,  according t o  Yanenko (Ref. 71, 
p. 33) ,  does not  permit  the  use of asymptotically  large  time  steps. It i s  
not   c lear   tha t  this advantage  of  the Douglas-Gunn  scheme would always 
outweigh other   benefi ts  which  might be  derived from an  a l ternat ive scheme. 
However, since  the AD1 scheme can  be viewed as  an  approximate  technique 
for  solving  the fundamental difference scheme, Eq. (25a),   al ternate  techni- 
ques  can readily  be  used  within  the  present  formulation. 

It i s  worth  noting  that  the  operator 9 can  be s p l i t   i n t o  any number 
of components which  need not  be  associated  with a particular  coordinate 
direct ion.  A s  pointed  out by  Douglas  and Gunn (Ref. 6 0 ) ,  t he   c r i t e r ion  
for   ident ie ing   sub-opera tors  i s  that  the  associated  matrices  be  "easily 
solved" (i .e. ,  narrow-banded) . Thus, mixed derivatives  can  be  treated 
implicit ly  within  the AD1 framework, although this would increase  the 
number of  intermediate  steps and thereby  complicate  the  solution  procedure. 
Finally,  only minor  changes are  introduced i f ,  in  the  foregoing development 
of the  numerical method, H, 3, and S are   funct ions  of   the  spat ia l  
coordinates and time,  as  well  as $!I. 

Solution of the  implicit  difference  equations.  Since  each of  Eqs. (27) 
i s  implici t   in   only one coordinate  direction,  the  solution  procedure  can 
be  discussed with re ference   to  a one-dimensional  problem. For simplicity,  
it i s  suff ic ient   to   consider  Eq. (27a) wi th  2 2 ,  .%3 = 0. Consider  the 
following  three-point  difference  formulas: 

f o r  a typical  computational  coordinate s. Here, A- = Gi - G i - 1 ,  A +  
@i+l - oi, and a parameter cy has  been  introduced ( 0  5 a 5 1) so a s   t o  
permit  continuous  variation from  backward t o  forward  differences. The 
standard  Central  difference  formula i s  recovered for cy = -$ and was used 
f o r  a l l  solutions  reported  here.  
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As an example,  suppose tha t   t he   9 th  component of   the  vector   operator  am 
has  the form 

where F and G are column vector  functions  having  the same (but   an  arbi t rary 
number) of  components; FT denotes  the  transpose  of F. The form of Eq. (30) 
permits  governing  equations  having any number of f i r s t  and  second s p a t i a l  
der ivat ive terms. Then, 

It i s  now possible   to   descr ibe  the  solut ion  procedure  for  Eq. ("a) 
f o r   t h e  one-dimensional  case  with 2 1 m  given  by Eq. (30) and difference 
formulas  given by Eq. (29). Because of  the   spa t ia l   d i f fe rence   opera tors ,  
Dm and D m  2 , Eq. (27a)  contains $i 1y $., and $i+l; consequently,  the 
system  of  linear  equations  generated  by  writing Eq. (27a) a t  successive 
gr id   po in ts  ( ~ m ) ~  can be wr i t ten   in   b lock- t r id iagonal  form  (simple tridia- 
gonal f o r  scalar  equations,  = 1). The block-tridiagonal matrix s t ruc ture  
emerges  from rewrit ing Eq. (27a) as 

* * * 
1 

where a ,  b, c are  square  matrices and d i s  a column vector,  each  containing 
only  n- level   quant i t ies .  When applied a t  successive  grid  points,  Eq. (32) 
generates a block-tridiagonal system of  equations  for $ which, a f t e r  
appropriate  treatment  of  boundary  conditions,  can be so lved   e f f ic ien t ly  
using  standard  block-elimination methods as discussed  by  Isaacson and 
Keller (Ref.  72, p .  58). The solution  procedure  for  Eqs.  (27b,c) i s  
analogous t o   t h a t   j u s t   d e s c r i b e d   f o r  Eq. (27a). It i s  worth  noting  that 
the  spat ia l   d i f ference  parameter  CY can be varied  with i or even  term  by 
term. For example, an "upwind difference"  formula  can be obtained i f  CY i s  
chosen as 1 or -1 depending on the  sign  of  the  elements  of F1; however, the  
formal  accuracy  of  the method  would then be reduced t o  f i rs t  order. 

* 
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Computing requirements. - Various  block-elimination  algorithms  can  be 
devised  for   solut ion of  equations  with  block-banded matrix s t ructures   (cf . ,  
Isaacson & Keller, R e f .  72). Such algorithms  can  be  derived  using  variants 
of  Gaussian  elimination  for a banded matrix, but  with  the  square  submatrix 
elements  of  the  banded matrix processed  using  matrix  algebra. Thus, opera- 
tions  involving  matrix  subelements are not assumed t o  commute, and d iv is ion  
by a matrix subelement i s  accomplished  by  computing  the  inverse and m u l t i -  
plying.  Following  this  procedure, McDonald and Briley ( R e f .  40) have 
developed  an  algorithm  for  block-tridiagonal  systems  arising from the  second- 
order  difference  formulas, Eq. (29). The algorithm  requires  only one 
inverse   per   g r id   po in t .  A standard  operation  count  (scalar  multiplications 
and divisions)  has  been  performed  for  systems  with L x L block  elements and 
N diagonal  block  elements, i .e. ,  L coupled  equations  along N gr id   points .  
The block-tridiagonal scheme requires (3N-2) (L3 + L2) operations,   the same 
as the  matrix fac tor iza t ion  scheme of  Isaacson and Keller (Ref .  72). 
Assuming there  are N gr id   po in ts   in   each   coord ina te   d i rec t ion ,   the   to ta l  
number of  operations  for a s ing le  t i m e  s t ep  i s  obtained from the  operation 
count  for  solution of one block-banded  system  by  multiplying  by 2N and 3s 
f o r  two and three  dimensions,  respectively. 

For comparison, it is  noted   tha t   in   the   case  of t he  Navier-Stokes 
equations, merely evaluating  the  r ight-hand  side of Eq. (27a), which would 
be a minimum requirement  for a one-step  expl ic i t  scheme, requires 302 N 
operat ions  for  a +point  difference  formula. 

In  view  of t he  many factors  involved, it i s  d i f f i c u l t   t o   e v a l u a t e  
prec ise ly  or with  any  generality  the  overall  computational  efficiency  of 
t he  MINT method r e l a t ive   t o   va r ious   o the r  methods. However, the  foregoing 
operational  counts show t h a t   t h e   e f f o r t  expended to   so lve   t he   imp l i c i t  
difference  equations  by  block-elimination i s  not  excessive compared with 
that  necessary  simply  to  evaluate  the  differenced  Navier-Stokes  equations, 
l e t  alone  the  various  other bookkeeping t a sks   p re sen t   i n  most large-scale 
computer  programs f o r   f l u i d  dynamics problems. In  the  solutions  presented 
here,   the  solution  of  the  block-tridiagonal  systems  using  double  precision 
arithmetic  required  only  about  twenty  percent  of  the  total computer time 
per  time s tep.  

Ar t i f i c i a l   d i s s ipa t ion .  - I n  computing solut ions  for   high Reynolds 
number flows, it i s  of ten  necessary  to  add a form o f   a r t i f i c i a l   v i s c o s i t y  
or d i s s i p a t i o n .   A r t i f i c i a l   d i s s i p a t i o n   i n  some form i s  often useful i n  
p rac t i ca l   ca l cu la t ions   t o   s t ab i l i ze   t he   ove ra l l  method when function boundary 
conditions  are  applied,  when coarse mesh spacing i s  used, or in   the  presence 
of   discont inui t ies .  The need f o r   a r t i f i c i a l   d i s s i p a t i o n  arises i n   c e r t a i n  
instances when centered  spatial  difference  approximations are used  for first 
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derivat ive terms. The use  of a r t i f ic ia l  d iss ipa t ion  i s  thus a matter of 
spat ia l   d i f ferencing  technique,  and it is  commonly employed i n   e i t h e r  
expl ic i t   o r   inherent  form,  and i n   b o t h   e x p l i c i t  and implici t   d i f ference 
schemes. 

One possible   diss ipat ion tern i n  common use i s  based on an  observation 
(e .g., Roache, R e f ,  73, p.  162) t h a t   f o r  a l i n e a r  model  problem representing 
a one-dimensional  balance  of  convection  and  diffusion terms, solutions 
obtained  using  central   differences  for  the  convection  term  are well behaved 
provided  the mesh Reynolds number ReAh = l%l Axm  Re i s  5 2, bu t   t ha t  
quali tative  inaccuracies  (associated  with  boundary  conditions)  occur  for 
Rehm > 2.   This   suggests   the  use  of   an  ar t i f ic ia l   v iscosi ty  term of  the 
form cmDi@, where 

t o  ensure  that   the   local   effect ive mesh Reynolds number i s  no greater  than 
two. The simplified  analysis  presented  here was extended  for  the  generalized 
tensor  equations  presented  previously and the   resu l t ing   d i ss ipa t ion  terns 
were added to   t he   con t inu i ty  and momentum equations. 

A second  type  of a r t i f i c i a l  damping which i s  a fourth-order  dissipation 
term has  been  suggested  by Beam and Warming (Ref. 39) t o  damp small wave- 
length  disturbances.   In  the  present  formulation an expl ic i t   fourth-order  
damping term was added direct ly   to   the  fundamental   d i f ference scheme, 
Eq. (25a), as follows: 

Note tha t   t he   d i s s ipa t ive   coe f f i c i en t s  wm impl ic i t ly   conta in   the  time s tep  
At; however, s ince  the  diss ipat ion tern i s  t r e a t e d   e x p l i c i t l y   ( t o   r e t a i n   t h e  
block  t r idiagonal   matr ix   s t ructure) ,  a l i n e a r  von Neumann s t a b i l i t y   a n a l y s i s  
shows tha t   t he   coe f f i c i en t s  wm must be i n   t h e  range  of 0 s wm S 1 f o r  
s t a b i l i t y  (Ref. 3 9 ) .  This condition  actually  implies a limit on the  
m a x i m u m  permissible time s t e p  which may be  taken, however, i n   t h e   p r e s e n t  
formulation  this was not a r e s t r i c t ion .  The advantage  of  the  fourth- 
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derivat ive  diss ipat ion added i n  Eq. (34) over  the more conventional 
a r t i f ic ia l   v i scos i ty   formula t ion ,  Eq. (33), i s  that  the  formal  accuracy  of 
the method i s  not   a l tered,  whereas Eq. (33) reduces  the  formal  accuracy t o  
f irst  order when Rehm > 2. S t r i c t l y  speaking,  the  overall method i s  
second-order  accurate  since ReA 4 0 as   the  mesh i s . r e f ined .  It should 
be remembered, however, t h a t  such  asymptotic  truncation  error  estimates  are 
meaningful  only  for  sufficiently  small  mesh s i z e ;  whereas i n   p r a c t i c a l  
calculations  of complex flows mesh resolution  capabili t ies  are  almost 
always strained. 

x, 
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Solution of t he  Heat Conduction  Equation 

Solutions  of  the  heat  conduction  equation were t h e  f i rs t  tes t  cases 
of  the MINT code app l i ed   i n  i t s  general   tensor form. In   vector   notat ion 
the  equation i s  given by 

v2 + = a d v a t  

which can be expressed i n   t e n s o r  form as  

(35 1 

" ( 3 6 )  2 represents   the ith general  coordinate and gij   are  the 
L f f ic ien ts   o f   the   met r ic   t ensor .  It should be noted  that  Eq. ( 3 6 )  i s  not 
a t r i v i a l  t es t  case i n   a s  much as  the  equation  contains  both  metric 
coef f ic ien ts  and the i r   de r iva t ives .  

Two cases were considered.  In  both  cases  the  solution domain was 
the  region  inter ior   to   the  c losed  curve formed by  an e l l i p t i c a l   a r c ,   t h e  
x-axis and an  arc  generated by points  with  an  equal  normal  distance from the  
e l l i p t i c a l   a r c .  An i l l u s t r a t i o n  i s  shown i n   F i g .  2. In   both  cases   the 
coordinate  system was generated  by  the two arcs   consis t ing of t h e   e l l i p t i c a l  
arc  and the  outer   arc .  The e l l i p t i c a l   a r c  was given as raw geometric  data 
and then f i t  with a parametric  curve  developed i n  a piecewise  fashion. The 
f i t t ing   p rocess  used least squares so tha t   eventua l lx  measured data  could be 
used. The parameterization  for  the  outer  arc was taken as i t s  arc  length; 
f o r   t h e   e l l i p t i c a l   a r c ,  it was imposed from the  outer  arc  under  the  condition 
that   l ines   joining  points   of   l ike   parameter   values   are  normal t o  each arc. 
Given this  parameterization,  the  coordinate  transformation i s  given i n  
Eq. (14). 

In   the  f i rs t  t e s t   c a s e   i n i t i a l   c o n d i t i o n s  were specified  such  that  a l l  
boundary points  were equal   to   zero and a l l   i n t e r i o r   p o i n t s  were equa l   t o  
unity.  The zero  values on the  boundary were held as boundary  conditions. 
The solution  then decayed t o  zero  throughout  the domain as the  equation 
was marched i n  time. In   t he  second  case  zero  derivative  conditions were 
appl ied   a t   the   inner  and outer  curved  boundaries. The segments  of  the x-axis 
were set a t  zero and uni ty ,   respec t ive ly .   In i t ia l ly  a l l  i n t e r io r   po in t s  

38 



were set t o   u n i t y  and the  solut ion was then  allowed t o  develop i n  time. 
A t  large  t imes  the  solut ion  sat isf ied  the  condi t ion V2p = 0 as  it should. 
These solutions  of  the  heat  conduction  equation do not  represent  as 
s t r ingent  a t e s t  of the  coordinate  system  as would a solution of the Navier- 
Stokes  equations. However, the  heat  conduction  equation i s  n o t   t r i v i a l  
and the  solutions  obtained  demonstrate-the  potential  of the  current 
coordinate  system. A feature   of   this  system i s  t h a t  it does not  require 
analytically  specified  curves  as  boundaries.  Solutions of the  Navier-Stokes 
equations  also were attempted i n   t h i s  same coordinate  system which was 
generated from raw geometric  data; however, in   this   case  successful   solut ions 
were not  obtained. 

The source  of  the  difficulty  in  the  Navier-Stokes  case was the  appear- 
ance  of  second derivatives  of  the  metric  coefficients.   In  contrast   the  heat 
conduction  equation  only  contained f irst  derivatives  of  the  metric  coeffi- 
c ien ts .  When the  boundary was expressed  as a non-analytically  specified 
curve, f i r s t   de r iva t ives  of the  metric  coefficients were suf f ic ien t ly  
smooth to  obtain  reasonable  solutions, however, second derivatives were not.  

Present   effor ts  now a re  aimed a t  resolving  this  problem; two approaches 
are  being  taken.  In  the f i rs t  approach the  equations  are  being  reformulated 
i n  a manner which does  not  require second derivatives of the  metric  coeffi-  
c ients .   In   the second  approach the  curve  f i t t ing  routines  are  being  refined 
fur ther  so a s   t o  produce su f f i c i en t ly  smooth der ivat ives   to   a l low a Navier- 
Stokes  solution. 

Flow About a Circular  Cylinder 

The f i rs t  Navier-Stokes  solution  calculated  under  the  present  effort 
was the  flow  about a c i rcu lar   cy l inder   a t  Reynolds number (based upon 
diameter)  equal t o   f o r t y .  This  case was chosen  since it represents a 
r e l a t ive ly  simple  geometry and since  both  experimental  data and other 
solutions were avai lable   for  comparison. A comprehensive l i s t  of references 
on both  experimental work and numerical  calculations i s  given  by  Ref. 30. 

The dependent var iables  used for  this calculat ion were the  density and 
the  contravariant components  of the  velocity,  4 and v . The calculation 
was init iated  by  specifying  the  inviscid  solution  throughout  the  f low  field 
and then imposing  a zero  velocity  condition on wall boundary points.  The 
ve loc i ty  was set   equal   to   zero and the  inviscid  t ransverse momentum equation 
(ap/an = 0) was solved a t   the   cy l inder   sur face .  The latter boundary  condi- 
t i o n  i s  required t o  determine a value of dens i ty   a t   t he  wall grid  point  and, 
i n  the  present  case of constant  total   temperature,  this condition i s  

2 

39 



equiva len t   to  ap/an = 0. It should be noted  that   the  condition of constant 
t o t a l  temperature and zero   s l ip   ve loc i ty   impl ies  aT/an = 0 a t  the  w a l l .  A t  
the  outer  boundary,  velocity and density were s e t  t o   t he i r   i nv i sc id   va lues  
over the upstream three quarters   of   the   outer  boundary (0 5 0 5 3 1 ~ / 4 ) .  F i r s t  
derivatives of the  physical   veloci ty  components were set  t o  zero and t h e  
pressure was se t  t o  i t s  inviscid  value  over  the  remainder  of  the far  f i e l d  
boundary. The far f i e l d  boundary w a s  t aken   to  be f i f teen  diameters  from the  
cylinder  center ( A  = 29) .   In   t h i s  computation t h e   o n l y   a r t i f i c i a l   v i s c o s i t y  
term added w a s  that   based on the  mesh Reynolds number c r i t e r i o n ,  Eq. (33) .  
The present  predictions were  obtained  with a 35 x 35 mesh (including boundary 
p o i n t s ) ,  and the  coordinate  system employed i s  shown in   F igs .   (3a ,b) .  A 
special   case  of Eq .  (16) i s  the  Roberts boundary layer  transformation 
(Ref. 78) which i s  obtained by s e t t i n g  m = 0. With a damping fac tor  D = 2.7, 
this  transformation was used to  concentrate  grid  points  both  near  the w a l l  and 
near   the   f ront  and rear stagnation  points as shown in   F ig .  3. The loopwise 
d i s t r ibu t ion  was computed by a r ig id   t r ans l a t ion   o f  Eq. (16 )  with m = 0. 
The r e s u l t  was t h e  d i s t r ibu t ion  O ( 0 )  = tanh (20D/n  -D)/tanh D where D = 1 . 5 .  
The computation  time  for  the  present  nonorthogonal form of  the  governing 
equations, Eqs. ( 7 ,  9-13), i s  approximately  5.9 x CPU minutes  per  grid 
point  per  t ime  step  on the  UNIVAC 1110, and  approximately  80 time s teps  were 
required  to  obtain  the  steady s ta te  solut ion.  

The present   predict ion  of   the  surface  pressure  a long  with  predict ions 
of Son and Hanratty (Ref. 74)  and Kawaguti (Ref. 75) are shown i n  Fig. 4. 
The Kawaguti pressure  prediction w a s  given relat ive t o   t h e   p r e d i c t e d  rear 
stagnation  point  pressure  and i n   t h i s   f i g u r e   t h e  Kawaguti rear stagnation 
point  pressure was a r b i t r a r i l y   s e t  a t  t h e  Son and Hanratty  value. The 
predictions  of Refs. 74 and 75 both were obtained  from  solutions  of  the 
incompressible  Navier-Stokes  equations. The present  solution i s  obtained 
from the  compressible  equations at a Mach  number equal t o  0.2. A s  shown i n  
Fig. 4 a l l  th ree   so lu t ions  are i n  reasonable  agreement  with  each  other. 
The discrepancies may be due t o   t h e   d i f f e r e n t  numerical methods or t h e   e f f e c t  
of  compressibility.  Another  possible  source  of  discrepancy  in  the  leading 
edge  region i s  the  appl icat ion of t h e   i n v i s c i d  transverse momentum equation 
as a wall boundary  condition in   the  present   formulat ion.  An improved wall 
boundary  condition i s  probably  required for proper  representation  of  both 
the  leading edge stagnation  region  and  separated  flow  regions. It i s  
bel ieved  that  a one-sided difference  representation  of  the normal momentum 
equation a t  t h e  w a l l  i s  a more r e a l i s t i c  boundary  condition,  since 
t h i s  boundary  condition  allows a normal pressure gradient  consistent 
wi th   the  momentum balance i n   t h e   n e a r  wall region. The center l ine  veloci ty  
prediction i s  compared t o   t h e   d a t a   o f  Coutanceau  and Bouard (Ref. 30) 
and the  predict ions  of  Kawaguti (Ref. 7 5 ) ,  Apelt (Ref. 7 6 )  and  Nieuwstadt 
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and Keller  (Ref. 77) in   F ig .  5. Again the agreement  between data and a l l  
analyses i s  good. Predicted  streamline  locations  are shown i n  Fig. 6 and 
streamwise  velocity  profiles  at  several  azimuthal  locations  are shown i n  
Fig. 7. A comparison of Figs. 5 and 6 shows a discrepancy i n   t h e  wake 
length, however, this   discrepancy  represents   less   than one ha l f   the   rad ia l  
grid  spacing a t  the  near wake closure  point. The values of the  wake length 
given  by  other  authors  (Refs. 30, 75, 76, 77) are  higher  than  the  present 
prediction, however, the  present   resul ts  were obtained  with a re la t ive ly  
coarse mesh. Also,  use of the  contravariant  velocity components, which was 
subsequently abandoned i n   t h e   a i r f o i l  computations, i s  believed to   increase  
the  truncation  error  in  the  numerical   predictions.  

Flow About a Joukowski A i r fo i l  

The second  Navier-Stokes solution  calculated was the  flow  about an 
11 percent  thick Joukowski a i r fo i l   a t   z e ro   ang le  of a t tack and a  Reynolds 
number of eighty  (80)  based on t h e   a i r f o i l  chord  length. The case  repre- 
sents  a much  more severe   t es t  of the  MINT tensor code because  of the  s ignif-  
icant   var ia t ion  in   the  metr ic   tensor   coeff ic ients   throughout   the computa- 
t i o n a l   f i e l d .  The coordinate systems for   the  Joukowski a i r f o i l  computations 
presented  herein were obtained  using  the  analytic Joukowski transformation 
in  conjunction  with Eq. (16) ( for  m = 0 and D = 3.3) in   the  pseudoradial  
coordinate  direction. No red is t r ibu t ion  of mesh points  in  the  aximuthal 
( loopxise)  direction was required  for  the  calculations  presented. The 
Joukowski a i r f o i l   r e s u l t s   a t  Re = 80  were obtained  using a 41 x 22 mesh 
(including boundary points)  with  the far f i e l d  boundary taken  to  be  approxi- 
mately  f i f teen chord  lengths from t h e   a i r f o i l .  The coordinate system 
employed i s  shown in   F igs .  (8a,b). 

The dependent var iables  employed i n  this calculat ion were the  densi ty  
and the  physical   velocity components, u1 and 9. The calculation was 
init iated  by  specifying  the  inviscid  solution  throughout  the  f low  field and 
then imposing  a zero  velocity  condition on wall boundary points.  The 
veloci ty  was set   equal   to   zero and the  inviscid  t ransverse momentum equation 
(ap/an = 0)  was solved a t  the   a i r fo i l   su r f ace .  A t  the  outer boundary, 
veloci ty  and densi ty  were set to   their   inviscid  values   over   the upstream 
three  quarters of the  outer  boundary. F i r s t   der iva t ives  of the  veloci ty  
components were set t o  zero and the  pressure was set t o  i t s  inviscid  value 
over  the  remainder  of  the far field boundary. I n  this computation,  both 
the  fourth-order damping, (Eq. 34), and t h e   a r t i f i c i a l   v i s c o s i t y  term based 
on the  mesh Reynolds number c r i te r ion ,  (Eq. 33), were  added t o   t h e  governing 



equations,  because it was found that   the   convent ional   diss ipat ion term alone 
(Eq. 33) did  not   prevent   spat ia l   osci l la t ions  f rom  occurr ing.  The r e l a t i v e l y  
coarse   gr id  employed in ' the   pseudo-rad ia l   d i rec t ion  (22 poin ts )  led t o  some 
d i f f i c u l t i e s  a t  the  far f ie ld  boundaries where the   ve loc i ty  components were 
specif ied.   Specif ical ly ,   the  computed ve loc i t ies   near   the  boundary did  not  
approach  the  inviscid  values as uniformly as desired. 

The predic ted   a i r fo i l   sur face   p ressure   d i s t r ibu t ion  is shown i n   F i g .  9 
and computed streamline  locations are shown i n   F i g .  10. The computed stream- 
wise and t ransverse   ve loc i ty   p rof i les  are shown i n   F i g s .  11 and 12, respect- 
ively,  at  the  azimuthal  locations  defined  by  the  nondimensional  surface  arc 
length  coordinate, sl/slma (see  Fig. 8).  The computed center l ine   ve loc i ty  
p r o f i l e  downstream o f   t he   t r a i l i ng  edge i s  shown in   F ig .  13. These predic- 
t ions  generally  exhibit   quali tatively  reasonable  behavior,   except  in  the 
v i c i n i t y  of t he   a i r fo i l   l ead ing  edge where the  pressure seems t o  be some- 
what higher  than  expected. This behavior  might  be  attr ibutable  to  the 
appl icat ion wall boundary  condition a p / h  = 0, which i s  physically  incorrect 
i n   t he   l ead ing  edge region. 

Finally,   the  Navier-Stokes  calculation  for  the  f low  about  an 11 percent 
t h i ck  Joukowski a i r f o i l   a t  zero  angle  of  attack and a Reynolds number of 1000 
was i n i t i a t e d   t o  demonstrate  the  high Reynolds number capabi l i ty   of   the  MINT 
code. The Joukowski a i r f o i l  results a t  ReA = 1000 were obtained  using a 
41 x 30 mesh (including  boundary  points)  with  the far f i e l d  boundary  taken 
t o  be  approximately  ten  chord  lengths from t h e   a i r f o i l .  The coordinate 
system employed i s  similar t o   t h a t  shown i n   F i g .  8, but  with a higher 
concentration  of  grid  points  near  the  airfoil   surface.   This  calculation 
was begun  by  applying  approximate  boundary  layer  corrections t o   t h e   i n v i s c i d  
ve loc i ty   f i e ld .  Again the   ve loc i ty  wits set equal   to   zero and the   inv isc id  
transverse momentum equation  (ap/an = 0) was solved a t  t h e   a i r f o i l   s u r f a c e .  
This  calculation was not run t o  convergence  because of time  and f'unding 
cons t ra in ts .  The surface  pressure  prediction i s  shown i n  Fig. 14, t he  
streamline  pattern i s  shown i n   F i g .  15 and the  computed streamwise  velocity 
p ro f i l e s  a t  several  azimuthal  locations  are shown i n  Fig. 16 f o r  this case.  
Again, these results appear t o  be  quali tatively  reasonable  although  the  f low 
ove r   t he   a i r fo i l   su r f ace  had not  yet   separated a t  the  time of   these  plots .  
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CONCLUSIONS 

Two major areas have  been  investigated  under  the  present  effort .  The 
first area concentrates upon t h e  development of a coordinate system f o r  
calculat ing  the  f low  about   an  isolated  a i r foi l .  The second area concentrates 
upon the   f low  f ie ld   ca lcu la t ion  i tself .  

A f’undamental requirement f o r  any a i r f o i l  flow  calculation  procedure is  
the  generation  of  an  efficient and accurate  system  of  coordinates. The 
e f f ic iency  i s  needed i f  eventual  applications  to  three-dimensional  and/or 
time-dependent  geometries are contemplated;  the  accuracy i s  needed t o  
insure  the  fundamental   integrity  of  the  overall   algorithm and t o   c o n t r o l  i ts  
e r r o r  growth. 

Under the  present   effor t   the   process  of  coordinate  generation  for  the 
en t i r e   c l a s s   o f   a i r fo i l   geomet r i e s  has  progressed i n  an  orderly  fashion 
leading  to  a solut ion of the  heat  conduction  equation  in a coordinate 
system  generated from a discrete   specif icat ion  of  boundary points.  The 
major problem  preventing a solution  of  the  Navier-Stokes  equations  with 
this  coordinate  generation  procedure  appears  to  be a lack of  smoothness i n  
the  higher   der ivat ives   of   the   metr ic   coeff ic ients .  Under invest igat ion are 
both  an  a l ternate  form of t he  Navier-Stokes  equations  requiring  less smooth- 
ness  in  metric data and a new coordinate  generating  technique  with  stronger 
smoothness propert ies .  

The second port ion  of   the  current   effor t  has successfully  solved  the 
Navier-Stokes  equations  about  isolated  bodies.  Predictions  for low Reynolds 
number flow  about a cy l inde r   a r e   i n  good agreement  with  both  experimental 
data and other  numerical  predictions.  Calculations  of  the  flow f i e l d  about 
a Joukowski a i r f o i l  a t  Rea = 80 are   qual i ta t ively  reasonable;   a t  Rea = 1000 
no  adverse  high Reynolds number effects  are  observed. 

Several  problems  which have a r i sen   in   the   course  of the   p resent   e f for t  
require   fur ther  work.  These include a thorough  investigation  of  both w a l l  
and f a r   f i e l d  boundary  conditions. A s  mentioned  previously a one-sided 
difference  representat ion  of   the normal momentum equation a t   t h e  w a l l  
should be considered as a boundary  condition  for  determining  the w a l l  value 
of   densi ty .   In   the far field,   solution  of  the  Euler  equations  over a port ion 
of  the  outer  computational  boundary may a l lev ia te   the   numer ica l   d i f f icu l t ies  
encountered in   tha t   reg ion   of   the   f low  f ie ld ,   wi thout   resor t ing   to  mesh 
refinement in   t he   i nv i sc id   po r t ion  of the   f low  f ie ld .  
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Figure 1.-A coordinate system for  flows with a narrow wake.' 
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Figure 2. - Computational domain for test  problems with the heat  equation. 



Figure 3 e .  - Circular  cylinder  coordinate system, Re = 40; near   f ie ld  (radia .1  locations 1 through 17). D 
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Figure 3b. - Circular  cylinder  coordinate system, Re = 40; far f i e l d  (radial  locations 17 through 35). D 
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Figure 6. - Streamlines about circular cylinder, Re = 40. D 
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Figure 8a. - Joukowski a i r f o i l  coordinate  system, Rea = 80;  near f i e l d  (pseudo radial  locations 1 through 12).  
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Figure 8b. - Joukowski a i r foi l   coordinate  system, Re = 80; far field  (pseudo-radial  locations 12 through 22). R 
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Figure 10. - Streamlines about Joukowski airfoil,  Re = 80. a 
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Figure 15. - Streamlinesabout Joukowski a i r fo i l ,  Rea = 1000 (not a converged solution). 
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